Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 247(16): 1489-1500, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35658550

RESUMO

Oxidative stress is involved in the deterioration of bone quality and mechanical strength in both diabetic and aging adults. Therefore, we studied the ability of the antioxidant compound, S-allylmercapto-N-acetylcysteine (ASSNAC) to protect bone marrow stromal cells (BMSCs) from advanced glycation end-products (AGEs) cytotoxicity and improve bone microarchitecture of adult healthy and obese/diabetic (db/db) female mice. ASSNAC effect on AGEs-treated cultured rat BMSCs was evaluated by Neutral Red and XTT cell survival and reactive oxygen species (ROS) level assays. Its effect on healthy (C57BL/6) and obese/diabetic (C57BLKS/J Leprdb+/+; db/db) female mice femur parameters, such as (1) number of adherent BMSCs, (2) percentage of CD73+/CD45- cells in bone marrow (BM), (3) glutathione level in BM cells, and (4) femur microarchitecture parameters by microcomputed tomography, was studied. ASSNAC treatment protected BMSCs by significantly decreasing AGEs-induced ROS production and increasing their cellular resistance to the cytotoxic effect of AGEs. ASSNAC treatment of healthy female mice (50 mg/kg/day; i.p.; age 12-20 weeks) significantly increased the number of BMSCs (+60%), CD73+/CD45- cells (+134%), and glutathione level (+110%) in the femur bone marrow. Furthermore, it increased the femur length (+3%), cortical diameter (+3%), and cortical areal moment of inertia (Ct.MOI; +10%) a surrogate for biomechanical strength. In db/db mice that demonstrated a compromised trabecular bone and growth plate microarchitecture, ASSNAC treatment restored the trabecular number (Tb.N, +29%), bone volume fraction (Tb.BV/TV, +130%), and growth plate primary spongiosa volumetric bone mineral density (PS-vBMD, +7%) and thickness (PS-Th, +18%). In conclusion, this study demonstrates that ASSNAC protects bone marrow cells from oxidative stress and may improve bone microarchitecture in adult healthy and diabetic female mice.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Acetilcisteína/análogos & derivados , Compostos Alílicos , Animais , Antioxidantes/farmacologia , Densidade Óssea , Diabetes Mellitus Experimental/tratamento farmacológico , Feminino , Fêmur , Glutationa , Camundongos , Camundongos Endogâmicos C57BL , Vermelho Neutro/farmacologia , Obesidade , Ratos , Espécies Reativas de Oxigênio , Microtomografia por Raio-X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...